Roll No.

(06/21-II)

5219

B. A./B. A. (Hons.)/B. Sc. **EXAMINATION**

(For Batch 2011 & Onwards)
(Fourth Semester)

MATHEMATICS

BM-241

Sequence and Series

Time: Three Hours Maximum Marks: $\begin{cases}
B.Sc.: 40 \\
B.A.: 27
\end{cases}$

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory.

(Compulsory Question)

1. (a) Least upper bound (l. u. b.) of a set, it exists, is unique. 2(1)

(5-07/1) B-5219

P.T.O.

- (b) By definition show that $<\frac{1}{n^2}>$ converges to zero. $1\frac{1}{2}(1)$
- (c) Show that $\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$ converges. $1\frac{1}{2}(1)$
- (d) Define absolute and conditional convergence. 1½(1)
- (e) If the product $\prod_{n=1}^{\infty} (1+a_n)$ is convergent, then $\lim_{n\to\infty} a_n = 0$. $1\frac{1}{2}(1)$

Unit I

- 2. (a) For any real number x, then exists unique integer n s.t. $n \le x < n + 1$. 4(3)
 - (b) Every non-empty bounded below subset of real numbers has the greatest lower bound.

 4(2½)

B-5219

- 3. (a) Infinite union of closed sets may or may not be closed, which is clear by two examples (i.e., give two examples). 4(3)
 - (b) A set A is compact iff every open cover of A has a finite subcover. 4(21/2)

Unit II

- 4. (a) If $\langle a_n \rangle$ is a sequence, then prove that $a_n \to 0$ iff $|a_n| \to 0$. 4(3)
 - (b) Using Squeeze principle, show that:

$$\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right] = 1. \ 4(2\frac{1}{2})$$

- 5. (a) State and prove Cauchy's first theorem on limits. 4(3)
 - (b) Prove that the sequence $\langle a_n \rangle$ defined by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2}a_n$ converges to 2. $4(2\frac{1}{2})$

P.T.O.

Unit III

6. (a) Test the convergence or divergence of

$$1 + \frac{x^2}{2} + \frac{x^4}{4} + \frac{x^6}{6} + \dots$$
, when $x > 0$. 4(3)

(b) The series:

$$\sum_{n=1}^{\infty} \frac{1}{np} = 1 + \frac{1}{2p} + \frac{1}{3p} + \dots + \frac{1}{np} + \dots$$

- is (i) convergent if p > 1 and (ii) divergent if $p \le 1$. $4(2\frac{1}{2})$
- 7. (a) Discuss the convergence of the series:

$$\frac{\alpha}{\beta} + \frac{1+\alpha}{1+\beta} + \frac{(1+\alpha)(2+\alpha)}{(1+\beta)(2+\beta)} + \dots \qquad 4(3)$$

(b) Using Cauchy's condensation test, discuss the convergence of the series:

$$\sum_{n=3}^{\infty} \frac{1}{n \log n (\log \log n)}.$$
 4(2½)

Unit IV

8. (a) Test the convergence and absolute convergence of the series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin n\alpha}{n^2}, \quad \alpha \text{ is real.}$$

(b) Test the convergence of the series:

$$\sum_{n=1}^{\infty} \frac{\cos nx}{np}, \text{ where } p > 0.$$
 4(2½)

9. (a) Show that $\prod_{n=0}^{\infty} (1+x^{2n})$ converges to

$$\frac{1}{1-x}$$
 if $|x| < 1$. https://www.cdluonline.com

(b) Every absolutely convergent infinite product is convergent. $4(2\frac{1}{2})$