(011/17-I)

5159

B. A./B. Sc. EXAMINATION

(First Semester)

MATHEMATICS: ALGEBRA

BM-111

 $Maxi. Marks : \begin{cases} B.Sc.: 40 \\ B.A.: 27 \end{cases}$ Time: Three Hours

Note: Attempt Five questions in all, selecting one question from each Section. Q. No. 1 is compulsory. Marks within Brackets is for B.A. Students.

(Compulsory Question)

- If A is a square matrix; prove that A-Å (a) is skew-Hermitian. 2(1)
 - (b) Prove that determinant of an orthogonal matrix is ± 1 . 2(1)

(3-03/25)B-5159

P.T.O.

https://www.cdluonline.com

https://www.cdluonline.com

- Find an equation whose roots are four times and with their sign changed of the roots of the equation $4x^4 - x^3 + x + 1 = 0$. $2(1\frac{1}{2})$
- Show that the equation $2x^7 5x^4 +$ $3x^3 - 1 = 0$ has at least four imaginary $2(1\frac{1}{2})$ roots.

Section I

Show that every square matrix can be expressed as the sum of a symmetric and skew-symmetric matrix in one and only $4(2\frac{1}{2})$ one way.

https://www.cdluonline.com

matrix of the the rank (b) $\begin{vmatrix} 1 & 2 & -1 & 3 \\ -2 & -4 & 4 & -7 \end{vmatrix}$ by reducing it to 4(3) normal form.

B-5159 2

matrix
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
. $4(2\frac{1}{2})$

(b) Prove that characteristics roots of a Hermitian matrix are all real. 4(3)

Section II

- 4. (a) Solve: $4(2\frac{1}{2})$ x + y + 2z + w = 5 2x + 3y - z - 2w = 2 4x + 5y + 3z = 7
 - (b) Show that the matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is orthogonal iff $A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ or $\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$, where $a^2 + b^2 = 1$.

5. Reduce the bilinear form $x_1y_1 + x_1y_3 - x_2y_1 + x_2y_2 + x_3y_3$ to the canonical form. Also find the equations of transformation. $8(5\frac{1}{2})$

Section III

- 6. (a) Solve the equation $x^4 8x^3 + 14x^2 + 8x 15 = 0$, roots being in A.P. $4(2\frac{1}{2})$
 - (b) Find the common roots of the equations $x^4 + 3x^3 5x^2 6x 8 = 0$ and $x^4 + x^3 9x^2 + 10x 8 = 0$. Hence solve them completely. 4(3)

https://www.cdluonline.com

- 7. (a) Form the equation whose roots are cubes of the roots of the equation $x^3 + px^2 + qx + r = 0$. 4(2½)
 - (b) Find the equation of squared differences of the roots of the equation $x^3 - 7x + 6 = 0$. 4(3)

(3-03/26)B-5159

3

https://www.cdluonline.com

P.T.O.

B-5159

4

https://www.cdluonline.com

https://www.cdluonline.com

Section IV

- 8. (a) Discuss the nature of the roots of the cubic $Z^3 + 3HZ + G = 0$. $4(2\frac{1}{2})$
 - (b) Solve the equation $x^3 3x^2 + 12x + 16 = 0$ by Cardan's method. 4(3)
- 9. (a) Solve the equation $x^4 4x^3 + 9x^2 12x + 18 = 0$ by Descarte's method. $4(2\frac{1}{2})$
 - (b) Solve the equation $x^4 + 4x^3 + 12x^2 8x + 95 = 0$ by Ferrari's method. 4(3)

https://www.cdluonline.com

https://www.cdluonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से

(3-03/27)B-5159

5

3,160

https://www.cdluonline.com