Roll No.

(04/17-I)

5218

B. Sc. EXAMINATION

(Fourth Semester)

PHYSICS

Paper VIII

Wave and Optics

Time: Three Hours Maximum Marks: 40

Note: Attempt *Five* questions in all. Q. No. 1 is compulsory. Select *one* question from each Unit. Use of scientific (non-programmable calculator is allowed.

- 1. (a) Is optic axis in a crystal a line or direction?
 - (b) What are directions in which extra ordinary rays are polarised?
 - (c) Write Fourier transform of function f(x) of x for $-\infty < x < \infty$.

(2-19/4) B-5218

P.T.O.

- (d) What is similarity theorem of Fourier transform?
- (e) Why is matrix method superior to the old conventional method to find the position of the image in an optical system?
- (f) Explain the term longitudinal and lateral chromatic abberations.

Unit I

- 2. (a) Explain how a beam of plane polarized light may be regarded as compared of two equal and opposite circularly polarised light.
 - (b) A sugar solution in a tube of length 0.2 cm produces optical rotation of 13° with light of wavelength $\lambda = 6000$ Å. Find the strength of the solution. Given specific rotation of sugar is 65°.
- 3. (a) What do you understand by double refraction? What are ordinary and extraordinary rays and how can you show that they are plane polarized? 6

(b) A beam of light is incident on a glass plate at an angle of 58°6' and the reflected beam is completely plane polarized. Find the refractive index of glass.

Unit II

- 4. (a) State Fourier's theorem and determine the values of Fourier's coefficients. 6
 - (b) Define Fourier sine series and half range series.
- Apply Fourier's theorem in the analysis of the output of a full wave rectifier.

Unit III

6. (a) State inverse Fourier's transform and find the Fourier transform of Gaussian function:

$$f(x) = e^{x^2/2}$$

(b) Find the sine transform of e^{-x} . 2

- 7. (a) What is translation matrix? Find the system matrix for thin lenses and derive thin lens formula.
 - (b) A thick len's of thickness 2 cm and having radii of curvature +6 cm and -6 cm made up of material of refractive index 1.5 is placed in air. Find the system matrix focal length and the position of unit points and nodal points.

Unit IV

- 8. (a) Explain the defects: astigmatism, coma and curvature. Explain how they can be minimised?
 - (b) For the achromatic combination of two lenses to the convex, the focal length of convex lens should be less than that of concave lens why?
- 9. (a) What is an optical fibre? Explain its various types.
 - (b) Explain normalized frequency (V-number). What is its importance? 2