Roll No.

(05/16-I)

5218

B. Sc. EXAMINATION

(Fourth Semester)

PHYSICS

Eighth Paper

Wave and Optics-II

Time: Three Hours Maximum Marks: 40

Note: There are *Nine* questions in this paper.

Attempt *Five* questions in all. Q. No. 1 is compulsory. Attempt remaining four questions by selecting only *one* question from each Unit. Use of scientific (non-programmable) calculator is allowed.

All questions carry equal marks.

- 1. (a) What are quarter and half wave plates?
 - (b) What is the importance of Fourier theorem?

(3-07) B-5218

P.T.O.

(d) What do you mean by graded index fiber?	traversing 25 cm length of 30% sugar solution.
(e) What is double refraction?	Unit II
(f) Explain the phenomenon of total internal reflection.	4. (a) State and explain Fourier theorem. What are its limitations?
Unit I	(b) Give the values of various Fourier series coefficients.
Explain the following:	5. (a) State and prove Fourier integral theorem.
(a) Polarization, optic axis, positive and negative crystal, principle section and calcite crystal.	(b) What is Parseval's identify for Fourier integrals?
(b) Calculate the thickness of double	Unit III
refracting crystal to introduce a path difference of $\lambda/2$ between ordinary and	6. (a) Define and extract infinite and finite Fourier sine transforms.
extra-ordinary rays when $\lambda = 589.3$ nm, $\mu_0 = 1.5442$ and $\mu_e = 1.5533$.	(b) Fourier transforms are very useful to handle the various physics problems.

(b)

(3-07) B-5218

Describe various methods of producing and detecting plane polarized light. 6

Calculate the specific rotation of the plane

P.T.O.

Why can't we use two lenses (in contact)

of the same material to form an

achromatic doublet?

(c)

B-5218

		a thin lens separated by some distance apart.
	(b)	What are translational and refraction matrix?
		Unit IV
8.	(a)	What is distortion of images? Discuss the types of distortion and how it is removed?
	(b)	What are the causes of chromatic aberration?
9.	(a)	What is acceptance angle? Derive expression for numerical aperture in terms of fractional refractive index.
	(b) .	The sum of refractive indices of cord and cladding is 2.95 and their differences is 0.03. Calculate numerical aperture o
		the fiber.

B-5218

3230

7. (a) Derive an expression for focal length of