Roll No.

(05/16-I)

5177

B. Sc. EXAMINATION

(Second Semester)

PHYSICS

First Paper (PH-201)

Properties of Matter and Kinetic
Theory of Gases

Time: Three Hours Maximum Marks: 40

Note: Q. No. 1 is compulsory. Four more questions are to be attempted selecting *one* question from each Unit. Log tables may be asked.

Compusiory Question

- 1. (a) Will solid and hollow spheres of equal mass and equal radius have equal moment of inertia? Explain.
 - (b) Differentiate between angle of twist and angle of shear. 2

(c)	What	are	average	speed,	most	probable
	speed	and	RMS s	speed?		2

What do you understand by transport (d) phenomena in a gas ?

Unit I

- Derive expression for the moment of (a) inertia of a thin spherical shell about a diameter.
 - (b) Determine the ratio of rotational and translational kinetic energy of a thing spherical shell rolling on a horizontal surface.
- Describe, how you can determine the 3. (a) moment of inertia of a body using a torsion pendulum.
 - (b) A sphere has a radius of 0.30 m. Calculate its moment of inertia about any diameter.

Unit II

If Y, η , σ and k represent Young's modulus, modulus of rigidity, Poissons ratio and Bulk modulus respectivley, then prove that :

(i)
$$Y = 2\eta(1 + \sigma)$$

(ii)
$$Y = 3K(1 - 2\sigma)$$

- Find the work done in twisting a steel wire of radius 1 mm and length 0.25 m through 60°. Given η for steel = 8×10^{10} Nm^{-2} .
- Derive an expression for the torque 5. · (a) required for twisting a solid cylinder of radius r, length l and modulus of rigidity η through an angle θ .
 - A steel wire of 4 m long and 5 mm in diameter is streched by a 5 kgwt. Find the elongation of the wire. Given Y = 2.4×10¹⁰ kgm⁻². 3

B-5177

Unit III

6.	(a)	State the essential features of the kinetic
		theory of gases and hence prove that the
		pressure of an ideal gas is given by
		$P = \frac{1}{3}\rho c^2$ where symbols have their usual
		meaning. 6

- (b) Calculate RMS speed of H_2 having density $8.9 \times 10^{-2} \text{ kgm}^{-3}$ at NTP.
- 7. (a) Explain the term degree of freedom.

 Using law of equipartition of energy,
 show that for a perfect polyatomic gas,
 the ratio of specific heat (r) is equal to
 1.33.
 - (b) What is Brownian motion? What are the factors which increases the Brownian motion of gas molecules.

Unit IV

- (a) Define mean free path. Show that mean free path is inversely proportional to pressure.
 - (b) The molecular diameter of a given gas is 2×10^{-10} m. Calculate the mean free path at NTP.
- (a) Derive the expression for the coefficient of viscosity of a gas on the basis of kinetic theory of gases.
 - (b) Find the number of molecular of Argon gas per m^3 , when diameter of the gas molecules is 3×10^{-8} m and mean free path is 2×10^{-3} m.

3,500