Roll No.

(07/20-I)

bus doesoidorism nee 5257 mano solicit

B. Sc. EXAMINATION

(Sixth Semester)

PHYSICS

Paper-XI (PH-601)

Solid State and Nano-Physics

Time: Three Hours Maximum Marks: 40

Note: Attempt Five questions in all, selecting at least one question from each Unit. Q. No. 1 is compulsory. Use of Scientific non-programmable calculator is allowed.

1. (a) Define Wigner seitz primitive cell. 1

What do you mean by Bravits lattice ?

- (b) What do you mean by K-space? 1
- (c) Give the practical applications of superconductivity.

	in London's theory?
(e) Differentiate between nanobiotech and
	bionanotech. 2
(f) How is nanoscience different from
	nanotechnology?
	Unit I
2. (a	Discuss the crystal structure of diamond
	and show the tetrahedral bond between
	the atoms of a unit cell of diamond. 4
(1	What are Miller indices ? Draw sketches
	illustrating (101), $(\overline{1}11)$ and $(\overline{2}00)$ planes
	in cubic unit cell.

What do you mean by Bravais lattice ?

Explain different types of Bravais lattices

in three dimensions.

(b) Why can the crystal lattice not have five

2

fold rotational symmetry?

(d) What was there a need for modification

Unit II

- 4. (a) Show that the reciprocal lattice of a f.c.c. lattice is b.c.c. lattice.
 - (b) X-ray beam is incident on a crystal face having interplanar spacing 3.82Å. The first order Bragg's reflection is observed at a galancing angle of 8° 35. Calculate the wavelength of the X-ray. (sin8° 35 = 0.1492).
- (a) Derive Bragg's law of diffraction crystal and give its important features.
 - (b) Define reciprocal lattice. Give its physical significance and properties also.3

Unit III

6. (a) Discuss flux quantization and show that the magnetic flux within the superconducting ring is quantized in unit of h/2e.

(1-04/17) B-5257

P.T.O.

3. (a)

- (b) Define Meissner effect and show that it is in contradiction of Maxwell's equation.
- 7. (a) Derive London's equation and explain London's penetration depth also. 5
- (b) Calculate the penetration depth for tin at $3.5 \, \mathrm{K}$ if transition temperature is $3.72 \, \mathrm{K}$ and penetration depth at $0 \, \mathrm{K}$ is $3.4 \times 10^{-8} \, \mathrm{m}$.

Unit IV

- 8. (a) Discuss the scope of nanotechnology in development of modern technology. 4
 - (b) Explain the role of nanotechnology in electronics and medicine.
- 9. (a) What is nano physics? Discuss its historical background in detail.
 - (b) Describe Molecular assembler concept.4