Unit IT1

6. (a) Expand xwu\ +3y-2 in powers of
Oﬂl:m:ﬁ:ijw. 7
(b) If Vis a function of two variables x and

»y and X=rcosO, y=rsind, prove that :
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7. Show that -

Fx, NVHAH+E+N%|w?+%+uvlw§®&+&w

has a minima at (I, 1, 1) and a maxima at
(=1, -4, =7}, 14

Unit TV

8. State and prove Abel's theorem (First form
and 2nd form) in power series. 14

9. State and prove Taylor's theorem in power

series. ; : 14
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If f e R(a) and g € R(a) on [a, b], then
/2 € R().

Prove that :

-

.ﬁx?iin.«vnw

;
Show that —= is uniformly
1+ nx~

convergent in R.

State and prove Cauchy's general principle

of uniform convergence for sequences.

Show that f(x,y)=

H‘L is not

differentiable at the point (0, 0).

If :ue?+3v+€?lm&. show that :

Define orthogonal system of functions in

a Fourier series. 2x7=14

Unit I
2. (a) Define R-S integral. m:oé the existence
°  of the Riemann-Stieltjes integral. 7
(b) If lim S(P, f; o) exists as u(P) — 0,
then / € R(a), and
lim S(P, f,«a H._.w do
lim (P, fo) = | fdot. 7
3. (a) State and prove first mean value and 2nd
mean value theorem. i
(b) Iffe R(a)on [a, b] and if a < ¢ < b,
then f € R(a) on [a, ¢] and on [c¢, b],
and : 7
[ fdo= [ fdo+ [ fda
a a /&5
Unit II
4. State and prove Dini's theorem. 14

5. State and prove Weierstrass approximation

theorem. 14
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