Unit III

- 6. (a) Expand $x^2y+3y-2$ in powers of (x-1) and y+2.
- (b) If V is a function of two variables x and y and $x = r \cos \theta$, $y = r \sin \theta$, prove that:

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = \frac{\partial^2 V}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{1}{r} \frac{\partial V}{\partial r}$$

7. Show that:

$$f(x, y, z) = (x+y+z)^3 - 3(x+y+z) - 24xyz + a^3$$

has a minima at (1, 1, 1) and a maxima at (-1, -1, -1).

Unit IV

- 8. State and prove Abel's theorem (First form and 2nd form) in power series.
- 9. State and prove Taylor's theorem in power series.

B-11642

350

Roll No.

(12/19-II)

1642

M. Sc. (2 Year) EXAMINATION

(For Batch 2017 & Onwards)

(First Semester)

MATHEMATICS

MTHCC-2102

Real Analysis

Time: Three Hours

Maximum Marks: 70

Note: Attempt *Five* questions in all. Q. No. 1 is compulsory consisting of seven questions of 2 marks each. Further the paper is divided into four Units each consisting of two questions. Candidate is required to attempt *one* question from each Unit consisting of 14 marks for each. Marks are indicated with question.

(2-21/1) B-11642

- 1. (a) If $f \in \mathbf{R}(\alpha)$ and $g \in \mathbf{R}(\alpha)$ on [a, b], then $fg \in \mathbf{R}(\alpha)$.
- (b) Prove that:

$$\int_0^3 x \left(d[x] - x \right) = \frac{3}{2}$$

- (c) Show that $\frac{x}{1+nx^2}$ is uniformly convergent in R.
- (d) State and prove Cauchy's general principle of uniform convergence for sequences.
- (e) Show that $f(x, y) = \sqrt{|xy|}$ is not differentiable at the point (0, 0).
- (f) If $u = \phi(x + at) + \psi(x at)$, show that :

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

(g) Define orthogonal system of functions ina Fourier series.2×7=14

Unit I

- of the Riemann-Stieltjes integral. 7
- (b) If $\lim S(P, f, \alpha)$ exists as $\mu(P) \to 0$, then $f \in \mathbf{R}(\alpha)$, and

$$\lim_{\mu(P)\to 0} S(P, f, \alpha) = \int_a^b f d\alpha.$$
 7

- . (a) State and prove first mean value and 2nd mean value theorem.
- (b) If $f \in \mathbf{R}(\alpha)$ on [a, b] and if a < c < b, then $f \in \mathbf{R}(\alpha)$ on [a, c] and on [c, b], and :

$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha$$

Unit II

State and prove Dini's theorem.

14

5. State and prove Weierstrass approximation theorem.

(2-21/2) B-11642

P.T.O.