Discuss reflection and refraction of P-waves different properties. at an interface between two solid mediums of

- of a semi-infinite elastic solid. Derive the formal solution of Lamb's problem for a normal line source is acting on the surface
- condition for existence of these waves. 14 thickness overlying a half-space. Derive the What are Surface Waves? Obtain the frequency equation for Love waves in a layer of uniform

Roll No. PavaW Ispirado? onist (9)

(07/21-II)

M. Sc. (2 Year) EXAMINATION

(For Batch 2018 & Onwards)

(Fourth Semester)

MATHEMATICS

MTHCE-2404

Mathematical Aspect of Seismology

Time: Three Hours

Maximum Marks: 70

Note: Q. No. 1 is compulsory. Attempt Five All questions carry equal marks. each Unit I-IV and the compulsory question. questions in all, selecting one question from

(Compulsory Question)

- 1. (a) Define a Wave and Harmonic Wave.
- 9 Find velocity of the system of plane waves:

 $\phi = a\sin(Ax + By + Cz - Dt).$

(3-08/16)B-11786

P.T.O.

B-11786

- (c) Define Spherical Waves.
- (d) What do you mean by epicentre of an earthquake?
- (e) State Snell's law of reflection.
- (f) Define P and S waves of seismology.
- (g) Define Stoneley Waves.

Unit I

2. (a) Obtain progressive type solution of wave equation:

$$C^{2}\left(\frac{\partial^{2} \phi}{\partial x^{2}} + \frac{\partial^{2} \phi}{\partial y^{2}}\right) = \frac{\partial^{2} \phi}{\partial t^{2}}.$$

- (b) Show that $\phi = f(x\cos\theta + y\sin\theta Ct)$ represents a wave in two dimensions, the direction of propagation making an angle θ with the axis of x.
- (a) Obtain stationary type solution of wave equation in cylindrical co-ordinates.

B-11786

2

(b) Find a solution of $\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{C^2} \frac{\partial^2 \phi}{\partial t^2}$ such that $\phi = 0$ when $x = +\infty$ or $t = +\infty$.

merion s'diana in no Unit II haral on corisii . 8

- I. (a) Write a short note on relation between phase velocity and group velocity.
- (b) Describe phenomenon of Dispersion. 14
- 5. Explain the following:
- (a) Causes of Earthquakes
- (b) Energy released by earthquakes
- c) Seismic moment.

14

Unit III

6. What are SV-waves? Discuss the reflection of SV-waves incident at the plane free boundary of a semi-infinite elastic solid medium. 14