

(06/21-11)

1671

M. Sc. (2 Years) EXAMINATION

(For Batch 2017 & Onwards)
(Fourth Semester)

MATHEMATICS

MTHCC-2401

Functional Analysis

Time: Three Hours

Maximum Marks: 70

Note: Question No. 1 is compulsory. Attempt *Five* questions in all, selecting *one* question from each Unit including compulsory question.

All questions carry equal marks.

(Compulsory Question)

1. (a) If the metric d defined by d(x,y) = ||x-y||, where $x,y \in \mathbb{N}$. Show that normal linear space \mathbb{N} is a metric space w.r.t. distance function d defined above.

(5-09/20)B-11671

P.T.O.

- (b) Define a second conjugate space.
- (c) Show that strong convergence implies weak convergence but converse is not true.
- (d) Write down conjugate space of l_1 . 2
- (e) Let X and Y be normed linear spaces and let D be a closed subspace of X. If
 T:D→Y is bounded, then T is closed. 2
- (f) If $\langle e_i \rangle$ is an orthonormal set in a Hilbert space H and if x is any vector in H, then the set $S = \{e_i : (x, e_i) \neq 0\}$ is either empty or countable.
- (g) An operator on a Hilbert space H is normal if and only if $\|T^*x\| = \|Tx\|$ for every x.

Unit I

- 2. (a) Let N be a normal linear space over the scaler field F. Then:
- (i) The map $(\alpha, n) \to \alpha x$ from $F \times N$ $\to N$ is continuous.

B-11671

2

- (ii) The map $(x,y) \rightarrow x+y$ from $N \times N \rightarrow N$ is continuous.
- (iii) The map $x \to ||x||$ from N to R is continuous.
- (b) State and prove F-Ritz's Lemma. 7
- 3. Under usual notations show that B(N, N') is a complete normed linear space.

Unit II

- 4. (a) State and prove uniform boundedness principle.
- (b) Show that C[0,1] is not reflexive.
- 5. Let M be a closed linear subspace of a normed linear space N and let x_0 be a vector not in M. If d is the distance from x_0 to M, show that there exists a functional $f_0 \in \mathbb{N}^*$ s.t.:

$$(f_0(M) = \{0\}, f_0(x_0) = d \text{ and } ||f_0|| = 1).$$
 14

Unit

- 6. State and prove open mapping theorem. 14
- 7. (a) If M and N are closed linear subspaces of a Hilbert space H such that M L N, then the linear subspace M + N is also closed.
- (b) State and prove Cauchy-Schwarz inequality.

Unit IV

- 8. (a) Let H be a Hilbert space and let $\langle e_i \rangle$ be an orthonormal set in H. Then the following conditions are all equivalent to one another.
- (b) The real Banach space of all self-adjust operators on H is a partially ordered set whose linear structure and order structure are related by the following properties: 7

- (i) If $A_1 \le A_2$, then $A_1 + A \le A_2 + A$ for every A.
- (ii) $A_1 \leq A_2$ and $\alpha \geq 0$, then $\alpha A_1 \leq \alpha A_2$.
- (a) If A is a political operator on H, then I + A is nonsingular. In particular I + T* T and I + TT* are non-singular for an arbitrary operator T on H.
- (b) If T is an operator on H, then T is normal ⇔ its real and imaginary parts commute.