A sphere is moving through an infinite fluid at rest at infinity, find the pressure distribution

Unit IV

- (a) Show that the stream function and vortex flow satisfies the Laplace's equation. velocity potential of a two-dimensional
- (b) State and prove Buckingham π -theorem.
- (a) Describe the following boundary layer parameters:
- (i) Boundary layer thickness
- (ii) Displacement thickness
- (b) Describe the problem of boundary layer along a flat plate.

Roll No.

(07/21-II)

11675

M. Sc. (2 Year) EXAMINATION

(For Batch 2017 Only)

(Fourth Semester)

MATHEMATICS

Advanced Fluid Mechanics

MTHCE-2406

Time: Three Hours

Maximum Marks: 70

Note: Attempt Five questions in all, selecting one equal marks Number 1 is compulsory. All questions carry question from each Unit and Question

- Ξ Describe stream function for the twodimensional motion.
- Ξ respect to a line. Describe the image of a source with

B-11675

130

(2-32/13)B-11675

- (iii) State Milne-Thomson circle theorem.
- (iv) Describe impulsive motion of a fluid.
- (v) Define circular and rectilinear vortices.
- (vi) Define the term pressure coefficient.
- (vii) Describe Prandtl's boundary layer.

 $2 \times 7 = 14$

Unit I

- 2. (a) Show that the curves of a constant velocity potential and constant stream function cut orthogonally at their points of intersection.
- (b) Define complex potential and find the flow for which the complex potential is $w = z^2$.
- 3. (a) Find the complex potential due to a doublet in two dimensions.
- (b) Find the image of a source with regardto a circle.

Unit II

- iquid with velocity U parallel to the x-axial plane through the major and minor axis of a cross-section, then find the velocity potential and stream function. o10
- (b) Find the kinetic energy T when an elliptic cylinder moves in an infinite liquid with velocity U parallel to x-axis.
- 5. (a) State and prove theorem of Blasius. 10
- (b) For a uniform line source along the axis of x, find the Stokes' stream function. 4

Unit III

(a) Describe the velocity potential for a motion of a sphere through an infinite fluid at rest at infinity.

6.

(b) Determine the equations of line of flow when a sphere is at rest and the liquid flow past the sphere with velocity U. 7

(2-32/14)B-11675