Roll No.

(07/21-II)

M. Sc. (2 Year) EXAMINATION

(For Batch 2013 to 2016 Only)

(Fourth Semester)

MATHEMATICS

Mechanics of Solids-II MMT-5403

Time: Three Hours Maximum Marks: 80

Note: The question paper has consists of three attempt all the Sections as per instruction. Sections. Candidate will be required to

Section A

Note: Attempt all the parts.

1. (a) Define principle direction in the state of plane stress.

(2-40/15)B-9213

P.T.O.

- (b) Show that displacement of thick-walled tube under external and internal pressure is Ar+B/r.
- (c) Define the following terms:
-) Viscous material
- (ii) Viscoelastic materials
- iii) Correspondence principle of linear viscoelasticity
- (d) Explain the following:
- (i) Creep phenomenon
- (ii) Relaxation Phenomenon
- (e) Define the following terms:
- (i) Principle of superposition(ii) Exponential form of harmonic wave.
- (f) Define the following terms:
- (i) Lines of shearing stress
- (ii) Torsional rigidity
- (iii) Stress function

- (g) State:
- (i) Theorem of minimum potential energy
- (ii) Theorem of minimum complementary energy.
- (h) Define Kantorovich method in one- and two-dimensional.

Section B

Note: Attempt any five questions.

- 2. Derive general solution of biharmonic equation.
- 3. Discuss the arbitraryness in selection of two analytic function.
- 4. Define spring and dashpot and derive constitutive equation for Kelvin model.
- 5. Explain Creep and Relaxation phenomenon of Standard Linear Solid model.

(2-40/16)B-9213

6. Show that in the torsion of an elliptic cylinder:

$$\tau = 2\mu\alpha ab\sqrt{a^2 - e^2x^2}/(a^2 + b^2)$$

and maximum shearing stress occurs on the ends point of minor axis.

- Explain why dilatational wave are called are called secondary wave or S-wave primary wave or P-wave while rotational wave
- 00 State and prove reciprocal theorem of Betti theorem of work and reciprocity and Rayleigh or Betti's reciprocal theorem or
- Explain Ritz method in one- and twodimensional

Section C

Note: Attempt any two questions

10. Derive displacement and stress for thick-walled tube under external and internal pressure

B-9213

- 11. Explain deformation of thick-walled tube, when the material of the tube is elastic in dialatation distortion. and standard linear solid viscoelastic in
- 12. Explain propagation of Rayleigh wave.
- 13. Using method of Kantrovich, solve the B.V.P.:

$$\nabla^2 \Psi = -2$$
 in R

rectangle $|x| \le A$, $|y| \le B$. C being the boundary of R, where R is the