Roll No.

(07/21-II)

11658

M. Sc. (2 Years) EXAMINATION

(For Batch 2019 & Onwards)

(Second Semester)
MATHEMATICS

MTHCC-2201

Advanced Abstract Algebra

Time: Three Hours

Maximum Marks: 70

Note: Attempt Five questions in all, selecting one question from each Unit including compulsory Q. No. 1. All questions carry equal marks.

(Compulsory Question)

1. (a) Prove that characteristic of a field is equal to the characteristic of its sub-fields. 2

(5-34/4) B-11658

TO

- (b) Define algebraically closed field. Show that algebraically closed fields are infinite always.
- (c) Show that [K:Q]=2.
- (d) If F is a finite field of characteristics p then $a \rightarrow a^p$ is an automorphism of F. 2
- (e) A square of the area equal to area of the unit circle is not constructible by ruler and compass.
- (f) If T is nilpotent, then I T is regular (or invertible).
- (g) Under usual notations define C(f(x)). 2

Unit I

- 2. (a) Any prime field is either isomorphic to the field of rational numbers or to the field of integers modulo some prime number.
- (b) If L is an algebraic extension of K and K is an algebraic extension of F, then L is an algebraic extension of F.

3. (a) If f(x) is any polynomial of degree n≥ 1 over a field F, then there exists a field extension E of F such that f(x) has n roots in E and [E:F]≤n!.

(b) Find the splitting and degree of the polynomial x^5-1 .

Unit II

- then there exists a unique monic polynomial p(x) of positive degree over F, such that (i) p(a) = 0 (ii) if any $f(x) \in F[x]$, f(a) = 0, then p(x) divides f(x).
- (b) Let p(x) be an irreducible polynomial in F[x] and p'(t), then corresponding polynomial in F'(t). Suppose u and v are roots of p(x) and p'(t) respectively in some field extension E and E' of F

(5-34/5) B-11658

and F' respectively, then there exists an isomorphism μ of F(u) onto F'(v) such that $\mu(\alpha) = \alpha' \ \forall \alpha \in F$ and $\mu(u) = v . 7$

- 5. (a) An irreducible polynomial f(x) over a field F of characteristic p > 0 is inseparable if and only if $f(x) \in \mathbb{F}[x^p]$, i.e. f(x) is a polynomial in x^p .
- (b) Let K be a finite algebraic extension a field F. Then K is a normal extension of F if and only if K is the splitting field over F of some non-zero polynomial over F.

Unit III

- 6. (a) The set of all automorphisms of a field form a group under resultant composition.
- (b) Show that $\phi_n(x) \in Z[x]$.

THE STREET

B-11658

State and prove Fundamental theorem of Galois theory.

Unit IV

- 8. (a) If $T \in A(V)$ (dim V = n) has all its characteristic roots in F, then there is a basis of V in which the matrix of T is triangular.
- (b) If $u \in V_1$ is such that $uT^{n_1-k} = 0$, where $0 < k < n_1$, then $u = 40T^k$ for some $u = v_0 \in V_1$.
- The elements S and T in $A_F(V)$ are similar in $A_F(V)$ if and only if they have the same elementary divisors.