Section C

- 10. There exists a sub-space W of V, invarient under T s.t. $V = V_1 \oplus W$.
- 11. Two nilpotent linear transformations are similar if and only if they have the same invarients. 12
- 12. State and prove Hilbert basis theorem. 12
- 13. State and prove Wedderburn-Artin theorem. 12

Roll No.

(07/21-II)

9191

M. Sc. (2 Years) EXAMINATION

(For Batch 2013 to 2016 Only) (Second Semester)

MATHEMATICS

MMT-4201

Advanced Abstract Algebra-II

Time: Three Hours Maximum Marks: 80

Note: Attempt all parts of Section A, five questions Section C. from Section B and two questions from

Section A

- 1. (a) Prove that the relation of similarity is an equivalence relation in A(V).
- (b) Write the companion matrix for $(1+x)^n \cdot 2$

B-9191

4

(5-34/7) B-9191

P.T.O.

200

- (c) Define index of nilpotency.
- (d) Show that Q is not a free Z-module. 2
- (e) Define a semi-simple module.
- (f) Find the abelian group generated by (x_1, x_2) , subject to $2x_1 = 0$, $3x_2 = 0$. 2
- (g) Define a primary module.
- (h) Show that Z is not artinian.

Section B

- 2. If V is *n*-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, then T satisfies a polynomial of degree *n* over F. 8
- 3. If $u \in V_1$ is st $uT^{n_1-k} = 0$, where $0 < k < n_1$, then $u = 40T^k$ for some $u_0 \in V_1$.
- 4. Let V be a Vector space and $T \in A(V)$. Suppose:
- $p(x) = a_0 + a_1 x + \dots + a_{m-1} x^{m-1} + x^m \in \mathbb{F}[x] \quad ,$ be the minimal polynomial of T. Also suppose

that V is cyclic F[x]-module, then \exists a basis of V s.t. the matrix of T in this basis is C(p(x)).

- 5. State and prove Schur's Lemma.
- 5. Let M be a free R-module with basis $\{x_1, x_2,...,x_n\}$, then $\mathbb{R}^n \subseteq M$.
- 7. Let M_1 , M_2 ,...., M_k be Noetherian submodules, then $\sum_{i=1}^{k} M_i$ is also Noetherian. 8
- Let R be a commutative ring with unity and I be the finitely generated ideal of R s.t. $I = I^2$. Then I is the direct summand of R. 8
- 9. Find the abelian group generated by $\{x_1, x_2, x_3\}$, subject to : $5x_1 + 9x_2 + 5x_3 = 0$ $2x_1 + 4x_2 + 2x_3 = 0$

(5-34/8) B-9191

 $x_1 + x_2 - 3x_3 = 0$

P.T.O.