Roll No.

(05/16-I)

5219

B.A./B.Sc. EXAMINATION

(Fourth Semester)

MATHEMATICS

Sequences & Series

BM-241

Time: Three Hours Maximum Marks: {B.Sc.: 40 B.A.: 27

Note: Attempt Five questions in all, selecting one question from each Section. Q. No. 1 is compulsory. Marks in bracket are shown for B.A.

- 1. (a) Define limit point of a set. 1(1)
 - (b) Discuss the boundedness of the sequence:

$$<\frac{2n+3}{3n+4}>$$
 1(1½)

(3-08) B-5219

P.T.O.

- (c) State Cauchy's Principle of Convergence. 2(1½)
- (d) Show that every absolutely convergent series is convergent. $2(1\frac{1}{2})$
- (e) Examine the convergence of the product:

$$\prod_{n=1}^{\infty} \cos \frac{\theta}{n} \qquad \qquad 2(1\frac{1}{2})$$

Section I

- 2. (a) Prove that every non-empty set of real numbers which is bounded below has g.l.b. 4(2½)
 - (b) Show that the set of real is not a compact set. $4(2\frac{1}{2})$
- (a) Prove that the intersection of an arbitrary family of closed sets is closed. 4(2½)
- . (b) Prove that the set : $4(2\frac{1}{2})$

$$\left\{-1, 1, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{3}, \frac{1}{3}, \dots \right\}$$

is neither open nor closed.

Section II

- 4. (a) Prove that if a sequence $\langle a_n \rangle$ converges to a and $b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$, then the sequence $\langle b_n \rangle$ also converges to a^n . $4(2\frac{1}{2})$
 - (b) Show that the sequence $\langle a_n \rangle$ defined by $a_n = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1} \quad \text{does} \quad \text{not}$ converge. $4(2\frac{1}{2})$
- 5. (a) Show that $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n}$ converges. 4(2½)
 - (b) Prove that a necessary and sufficient condition for the convergence of a positive term series $\sum_{n=1}^{\infty} a_n$ is that the sequence $\langle S_n \rangle$ of the partial sums of the series defined by $S_n = a_1 + a_2 + \dots + a_n$. is bounded above. 4(2½)

Section III

6. (a) Test the convergence of the series:

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{x}{4 \cdot 5 \cdot 6} + \frac{x^2}{7 \cdot 8 \cdot 9} + \dots (x > 0)$$

$$4(2\frac{1}{2})$$

- (b) State and prove Cauchy's Root Test. $4(2\frac{1}{2})$
- 7. (a) Using Cauchy's condensation test, discuss the convergence of the series: 4(2½)

$$\sum_{n=1}^{\infty} \frac{1}{n(\log n)^p}$$

(b) Discuss the convergence of the series:

$$\frac{\alpha}{\beta} + \frac{1+\alpha}{1+\beta} + \frac{(1+\alpha)(2+\alpha)}{(1+\beta)(2+\beta)} + \dots \qquad 4(2\frac{1}{2})$$

Section IV

8. (a) Test the convergence of the following series: $4(2\frac{1}{2})$

$$\frac{1}{\log 2} - \frac{1}{\log 3} + \frac{1}{\log 4} - \frac{1}{\log 5} + \dots$$

B-5219

4

- (b) Show that the Cauchy's product of the convergent series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ with itself is divergent. 4(2½)
- 9. (a) Prove that the series $\sum_{n=1}^{\infty} |\log(1+a_n)|$ is convergent if and only if $\sum_{n=1}^{\infty} |a_n|$ is convergent.
 - (b) Show that the series:

$$\left(1-\frac{1}{2}\right)+\left(1-\frac{3}{4}\right)+\left(1-\frac{7}{8}\right)+\dots$$

is convergent but when parenthesis are removed, it oscillates. 4(21/2)