(04/17-I)

5260

B.A./B.Sc. EXAMINATION

(Sixth Semester)

MATHEMATICS

BM-362

Linear Algebra

Time: Three Hours Maximum Marks:
B.Sc.: 40
B.A.: 26

Note: Attempt Five questions in all, selecting at least one question from each Unit. Q. No.
1 is compulsory. Marks in brackets are meant for B.Sc.

Compulsory Question

1. (a) Show that the map $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (|x|, y - z) is not a linear transformation.

(2-21/1) B-5260

P.T.O.

- (b) Define rank and nullity of a linear transformation. 1(2)
- (c) Express V = (1, -2, 5) as a linear combination of the vectors $V_1 = (1, 1, 1)$, $V_2 = (1, 2, 3)$, $V_3 = (2, -1, 1)$ in the vector space $R^3(R)$.
- (d) Find the coordinates of the vector (-1, 2, 3, 4) relative to ordered basis B = {(0, 1, 1, 0), (0, 0, 1, 1), (1, 0, 0, 1), (0, 1, 0, 0) for V₄.
- (e) The union of two subspaces of a vector space V(F) may not be a subspace of V(F). Give example. 1(2)

Unit I

- (a) If W is a subspace of a finite dimensional vector space V(F), then W is finite dimensional and dim W ≤ dim V. Also dim W = dim V iff W = V.
 3(4)
- (b) Determine a basis of the subspace spanned by the vectors (3, 2, 4), (1, 0, 2), (1, -1, -1) and (6, 7, 5).

- 3. (a) If W₁ and W₂ are two subspaces of a finite dimensional vector space V(F), then prove dim (W₁ + W₂) = dim W₁ + dim W₂ dim(W₁ \cap W₂). 3(4)
 - (b) Determine a basis of the subspace spanned by the vectors (3, 2, 4), (1, 0, 2), (1, -1, -1) and (6, 7, 5).

Unit II

- 4. (a) Let $B = \{u_1, u_2, \dots, u_n\}$ be a basis of a vector space U(F) and $T : U \to U$ be a linear transformation. Then for any vector $u \in U$, prove [T(u), B] = [T B] [u, B] $2\frac{1}{2}(4)$
 - (b) Let $u_1 = (1, 1, -1)$, $u_2 = (4, 1, 1)$, $u_3 = (1, -1, 2)$ be a basis of \mathbb{R}^3 . Let $\mathbb{T} : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation such that $\mathbb{T}(u_1) = (1, 0)$, $\mathbb{T}(u_2) = (0, 1)$ and $\mathbb{T}(u_3) = (1, 1)$. Find \mathbb{T} .

- 5. (a) If $T: U(F) \rightarrow U(F)$ is a linear transformation then Rank $T + Nullity T = \dim U$. $2\frac{1}{2}(4)$
 - (b) Find the coefficients of the vector (5, -1, 2) w.r.t. the basis $V_1(1, 4, 2)$, $V_2(4, 2, 1)$, $V_3 = (2, 1, 3)$. $2\frac{1}{2}(4)$

Unit III

- 6. (a) Find the matrix representing the transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ defined by T(x, y, z) = (x + y + z, 2x + z, 2y z, 6y) relative to standard basis of \mathbb{R}^3 and \mathbb{R}^4 .
 - (b) Let $T: R^3 \to R^2$ be a linear transformation defined by T(x, y, z) = (2x + y + z, 3x 2y + 4z). Find the matrix T w.r.t. basis $B_1 = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ and $B_2 = \{(1, 3), (1, 4)\}$ of R^3 and R^2 respectively. Also verify $[T: B_1, B_2][u, B_1] = [T(u), B_2]. 2\frac{1}{2}(3\frac{1}{2})$

- 7. (a) Prove that characteristic polynomial and minimal polynomial of an operator T have the same irreducible factors. 2½(3½)
 - (b) Prove that minimal polynomial of a matrix of linear operator is unique.

21/2(31/2)

Unit IV

- 8. (a) Let V be inner product space, then $|\langle u, v \rangle| \le ||u|| ||v||$ for all $u, v \in V.2\frac{1}{2}(3\frac{1}{2})$
 - (b) Using Gram Schmidt process, find an orthonormal basis of $V_3(C)$ given the basis $u_1 = (1 + i, i, 1)$, $u_2 = (2, 1 2, 2 + i)$, $u_3^2 = (1 i, 0, -i)$. $2\frac{1}{2}(3\frac{1}{2})$
- 9. (a) Show that every finite dimensional innerproduct space has an orthonormal basis. $2\frac{1}{2}(3\frac{1}{2})$
 - (b) Show that if α , β are vectors in a unitary space V. then : $2\frac{1}{2}(3\frac{1}{2})$

$$\|\alpha + \beta\|^2 - \|\alpha - \beta\|^2 + i\|\alpha + i\beta\|^2$$

$$-i\|\alpha - i\beta\|^2 = 4\langle\alpha,\beta\rangle$$