Roll No.

(04/17-I)

5188

B. Sc. EXAMINATION

(For Batch 2014 & Onwards)

(Second Semester)

INORGANIC CHEMISTRY

Paper IV

CH-104

Time: Three Hours Maximum Marks: 27

Note: Q. No. 1 is compulsory. It carries 7 marks.

Attempt *Five* questions in all, selecting at least *two* questions each from Sections A and B.

- 1. (a) What is Hydrogen bond? Define.
 - (b) Draw and explain the structure of O₃ molecule.
 - (c) Why IF₇ exits but BrF₇ does not?

P.T.O.

- (d) Why do the hydrides of Oxygen and sulphur differ in physical state?
- (e) Predict the shape of CIF₃ on the basis of VSEPR theory.
- (f) NO₂ readily forms dimer whereas CIO₂ does not. Why?
- (g) Why the colour deepens from fluorine to iodine in halogen family?

Section A

- 2. Ice floats on Water. Explain.
- 3. Account for the following:
 - (a) Be(OH)₂ is insoluble but Be(OH)₂ is fairly soluble in water.
 - (b) $Be(OH)_2$ is amphoteric while $Mg(OH)_2$ is basic.
- 4. Describe the structure of XeF₂, XEF₄ and XeF₆ by applying VSEPR theory.

Section B

- 5. (a) What are interhalogen compounds? How are they formed? Discuss the structure of IF₇ and CIF₃.
 - (b) Draw the structure of:
 - (i) XeOF₂
 - (ii) H₃PO₃.
- 6. How would you account for the following?
 - (a) H₂S is more acidic than H₂O
 - (b) The N-O bond in NO₂ is shorter than N-O bond in NO₃
 - (c) Both O₂ and Fe₂ stabilize high oxidation states but the ability of oxygen to stabilize the higher oxidation states exceeds that of fluorine.
- 7. Explain the following giving reasons:
 - (a) H₃PO₄ is diprotic.
 - (b) Nitrogen is an exothermic compound but NCl₃ is an endothermic compound.
 - (c) (SiH₃)₃N is a weaker base than (CH₃)₃N why?