Roll No.

(04/17-I)

5258

B. Sc. EXAMINATION

(Sixth Semester)

PHYSICS

Paper XI

PH-602

Atomic and Molecular Spectroscopy

Time: Three Hours Maximum Marks: 40

Note: There are nine questions in this paper. All questions carry equal marks. Attempt Five questions in all. Q. No. 1 is compulsory. Attempt remaining four question by selecting only one question from each Unit. Use of scientific (non-programmable) calculator is allowed.

1.	(a)	What is Lande interval rule? 2										
	(b)	Differentiate between electronic, vibronic										
		and rotational spectra.										
	(c)	What is spin orbit interaction? 2										
	(d)	What is the importance of Zeeman										
		experiment? 2										
Unit I												
		TV cross 4										
2.	(a)	What are the quantum numbers associated										
		with the vector atom model? Give the										
		physical interpretation of various quantum										
310		numbers required to define electronic										
15.	•	configuration in an atom. 5										
	(b)	Discuss the shortcomings of Bohr's										
		Sommerfeld theory. 3										
3.	(a)	What is the correction to be applied in										
		Bohr's theory for finite mass of the										
		nucleus due to the motion of the nucleus?										
		5										
	(b)	Calculate the ground state energy of										
		electron in case of Li ⁺⁺ .										
B-5258		2 Page governor										

Unit II

- 4. (a) What do you understand by Larmor precession? Find an expression for Larmor frequency.
 - (b) Differentiate between penetrating and non-penetrating orbits.
- 5. (a) How does the spin-orbit interaction when combined the relativity correction, explain the hydrogen fine structure? Discuss its limitation.
 - (b) The doublet splitting of the first excited state ${}^2P_{3/2} = {}^2P_{1/2}$ of hrydrogen is 0.365 cm⁻¹. Calculate the corresponding separation for Li⁺⁺.

Unit III

6. (a) Outlines the essential features of the spectra of alkaline-earth elements. How are they explained theoretically?

(b)	F	ind	the	e po	ssible	valu	es	of	resu	ltant
	angular momentum for two electrons with									
	j_1	=	3/2	and	other	with	j_2	= 5	/2.	2

- 7. (a) What is LS coupling? Find out the spectral terms arising due to sp configuration.
 - (b) The quantum numbers of two electrons in a two valance electron atom are $n_1 = 5$, $l_1 = 0$, $s_1 = 1/2$ and $n_2 = 4$, $l_2 = 0$; $s_1 = 1/2$. Assuming LS coupling, determine the possible value of J. 3

Unit IV

- 8. (a) Discuss the Zeeman pattern of a line due to transition:
 - (i) ${}^{2}P_{3/2} \rightarrow {}^{2}S_{1/2}$
 - (ii) ${}^2D_{3/2} \rightarrow {}^2P_{1/2}$.
 - (b) Calculate the Lande g factor for the term ${}^2D_{3/2}$.

- 9. (a) What is Stark effect? Discuss the weak-field of Stark effect in hydrogen. 5
 - (b) Calculate the two-possible orientations of spin vector S with respect to a mangetic field direction.