Roll No.

(011/17-I)

5197

B. Sc. EXAMINATION

(Third Semester)

PHYSICS

PH-301

Computer Programming and Thermodynamics

Time: Three Hours Maximum Marks: 40

Note: Attempt Five questions in all, selecting at least one question from each Unit. Q. No.
1 is compulsory. Use of non-programmable scientific calculator is allowed.

- 1. (a) Convert 12.625 into Binary nos. 2
 - (b) Define Nernst heat law.
 - (c) How does a freezing mixture cool a gas?
 - (d) Why a liquid gas is collected in Dewar flask?

P.T.O.

(e)	What is tripple point on a phase
	diagram?
(f)	How will you distinguish between
	evaporation and boiling?
	Unit I
(a)	Define flow chart. Give description of
	various symbols used in flow chart. Also
	give its merits and demerits. 6
(b)	Draw a flow chart to find the area of a
	circle. 2
(a)	Define the following in FORTRAN with examples:
	(i) Built in function
	(ii) Implicit and explicit typing
	(iii) Executable and non-executable
	statement. 6
b)	What is a nested Do loop? Explain it.

3.

B-5197

Unit II

- 4. Write a program to evaluate finite integral by Simpson's 1/3rd rule using proper algorithm and flow chart.
- 5. (a) Develop and algorithm and write a FORTRAN PROGRAM to find the roots of a quadratic equation.
 - (b) Write a Fortran program to find the maximum, minimum and range of a given set of numbers.

Unit III

- 6. (a) What is Joule-Thomson's effect? Discuss the experimental set up and results of porous plug experiment.
 - (b) Calculate the change in Entropy when 1 gm atom of solid mercury at its meling point is raised to a temperature of 40°C. Given melting point for mercury is -39°C; Latent heat of fusion = 3.0 calories/gm.

- 7. (a) Give principle, construction and working of *k* onnes method for liquification of Helium.
 - (b) What is the difference between Joule's Thomson effect and adiabatic cooling? 2

Unit IV

- 8. (a) State and explain four thermodynamical functions.
 - (b) Show that:

$$C_2 - C_1 = \frac{dL}{dT} - \frac{L}{T}$$

where C_1 and C_2 represent the specific heat of a liquid and its saturated vapour and L is the latent heat of vapours. 2

(a) Derive Clausius Clapeyron latent heat equation from Maxwell's thermodynamical equations.

(b) Using Maxwell's equation Calculate under what pressure the water would boil at 100°C if the change in specific volume when 1 gm of water converts into steam is 1676 cm³. Given latent heat of vapourisation of steam = 540 cal/gm and Atmosphere = 10⁶ dyne/cm².

2,340